Main Search Form List of PLANCK Catalogs Tips Archive Hera Data Analysis Help

PCCS030GHZ Catalog

Planck was a European Space Agency (ESA) mission, with significant contributions from the National Aeronautics and Space Agency (NASA). It was the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 12 August 2009. Planck then continuously measured the intensity of the sky over a range of frequencies from 30 to 857 GHz (wavelengths of 1 cm to 350 micron) with spatial resolutions ranging from about 33 to 5 arcminutes, respectively. The Low Frequency Instrument (LFI) on Planck provided temperature and polarization information using radiometers which operated between 30 and 70 GHz. The High Frequency Instrument (HFI) used pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353 GHz but did not measure polarization information in the two upper HFI bands at 545 and 857 GHz. The lowest Planck frequencies overlapped with WMAP, and the highest frequencies extended far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck provided an unprecedented window into dust emission at far-infrared and submillimeter wavelengths.

The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogs, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalog. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow the authors to increase the number of objects in the catalog, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).

The Low Frequency Instrument (LFI) Data Processing Center (DPC) produced the 30, 44, and 70 GHz maps after the completion of eight full surveys (spanning the period from 12 August 2009 to 3 August 2013). In addition, special LFI maps covering the period 1 April 2013 to 30 June 2013 were produced in order to compare the Planck flux-density scales with those of the Very Large Array and the Australia Telescope Compact Array, by performing simultaneous observations of a sample of sources over that period. The High Frequency Instrument (HFI) DPC produced the 100-, 143-, 217-, 353-, 545-, and 857-GHz maps after five full surveys (from 2009 August 12 to 2012 January 11).

As in the PCCS, the PCCS2 provides four different measures of the flux density for each source. They are determined by the source detection algorithm (DETFLUX), aperture photometry (APERFLUX), point spread function fitting (PSFFLUX), and Gaussian fitting (GAUFLUX). Only the first is obtained from the filtered maps; the other measures are estimated from the full-sky maps at the positions of the sources. The source detection algorithm photometry, the aperture photometry, and the point spread function (PSF) fitting use the Planck band-average effective beams, calculated with FEBeCoP (Fast Effective Beam Convolution in Pixel space). Note that only the PSF fitting algorithm takes into account the variation of the PSF with position on the sky. The PCCS2 has been produced from the Planck full-mission maps (eight sky surveys in the LFI and five sky surveys in the HFI), and therefore supersedes the previous catalogs (for the PCCS only 1.5 surveys were analyzed). It also includes the latest calibration and beam information, and the authors have improved some of the algorithms used to measure the photometry of the sources.

This table contains the PCCS Public Release 2 table of sources detected at 30 GHz. Where the HEASARC parameter names differ from those used in the original table, the original names are listed parenthetically in upper case at the end of the parameter description.


PCCS044GHZ Catalog

Planck was a European Space Agency (ESA) mission, with significant contributions from the National Aeronautics and Space Agency (NASA). It was the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 12 August 2009. Planck then continuously measured the intensity of the sky over a range of frequencies from 30 to 857 GHz (wavelengths of 1 cm to 350 micron) with spatial resolutions ranging from about 33 to 5 arcminutes, respectively. The Low Frequency Instrument (LFI) on Planck provided temperature and polarization information using radiometers which operated between 30 and 70 GHz. The High Frequency Instrument (HFI) used pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353 GHz but did not measure polarization information in the two upper HFI bands at 545 and 857 GHz. The lowest Planck frequencies overlapped with WMAP, and the highest frequencies extended far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck provided an unprecedented window into dust emission at far-infrared and submillimeter wavelengths.

The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogs, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalog. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow the authors to increase the number of objects in the catalog, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).

The Low Frequency Instrument (LFI) Data Processing Center (DPC) produced the 30, 44, and 70 GHz maps after the completion of eight full surveys (spanning the period from 12 August 2009 to 3 August 2013). In addition, special LFI maps covering the period 1 April 2013 to 30 June 2013 were produced in order to compare the Planck flux-density scales with those of the Very Large Array and the Australia Telescope Compact Array, by performing simultaneous observations of a sample of sources over that period. The High Frequency Instrument (HFI) DPC produced the 100-, 143-, 217-, 353-, 545-, and 857-GHz maps after five full surveys (from 2009 August 12 to 2012 January 11).

As in the PCCS, the PCCS2 provides four different measures of the flux density for each source. They are determined by the source detection algorithm (DETFLUX), aperture photometry (APERFLUX), point spread function fitting (PSFFLUX), and Gaussian fitting (GAUFLUX). Only the first is obtained from the filtered maps; the other measures are estimated from the full-sky maps at the positions of the sources. The source detection algorithm photometry, the aperture photometry, and the point spread function (PSF) fitting use the Planck band-average effective beams, calculated with FEBeCoP (Fast Effective Beam Convolution in Pixel space). Note that only the PSF fitting algorithm takes into account the variation of the PSF with position on the sky. The PCCS2 has been produced from the Planck full-mission maps (eight sky surveys in the LFI and five sky surveys in the HFI), and therefore supersedes the previous catalogs (for the PCCS only 1.5 surveys were analyzed). It also includes the latest calibration and beam information, and the authors have improved some of the algorithms used to measure the photometry of the sources.

This table contains the PCCS Public Release 2 table of sources detected at 44 GHz. Where the HEASARC parameter names differ from those used in the original table, the original names are listed parenthetically in upper case at the end of the parameter description.


PCCS070GHZ Catalog

Planck was a European Space Agency (ESA) mission, with significant contributions from the National Aeronautics and Space Agency (NASA). It was the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 12 August 2009. Planck then continuously measured the intensity of the sky over a range of frequencies from 30 to 857 GHz (wavelengths of 1 cm to 350 micron) with spatial resolutions ranging from about 33 to 5 arcminutes, respectively. The Low Frequency Instrument (LFI) on Planck provided temperature and polarization information using radiometers which operated between 30 and 70 GHz. The High Frequency Instrument (HFI) used pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353 GHz but did not measure polarization information in the two upper HFI bands at 545 and 857 GHz. The lowest Planck frequencies overlapped with WMAP, and the highest frequencies extended far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck provided an unprecedented window into dust emission at far-infrared and submillimeter wavelengths.

The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogs, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalog. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow the authors to increase the number of objects in the catalog, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).

The Low Frequency Instrument (LFI) Data Processing Center (DPC) produced the 30, 44, and 70 GHz maps after the completion of eight full surveys (spanning the period from 12 August 2009 to 3 August 2013). In addition, special LFI maps covering the period 1 April 2013 to 30 June 2013 were produced in order to compare the Planck flux-density scales with those of the Very Large Array and the Australia Telescope Compact Array, by performing simultaneous observations of a sample of sources over that period. The High Frequency Instrument (HFI) DPC produced the 100-, 143-, 217-, 353-, 545-, and 857-GHz maps after five full surveys (from 2009 August 12 to 2012 January 11).

As in the PCCS, the PCCS2 provides four different measures of the flux density for each source. They are determined by the source detection algorithm (DETFLUX), aperture photometry (APERFLUX), point spread function fitting (PSFFLUX), and Gaussian fitting (GAUFLUX). Only the first is obtained from the filtered maps; the other measures are estimated from the full-sky maps at the positions of the sources. The source detection algorithm photometry, the aperture photometry, and the point spread function (PSF) fitting use the Planck band-average effective beams, calculated with FEBeCoP (Fast Effective Beam Convolution in Pixel space). Note that only the PSF fitting algorithm takes into account the variation of the PSF with position on the sky. The PCCS2 has been produced from the Planck full-mission maps (eight sky surveys in the LFI and five sky surveys in the HFI), and therefore supersedes the previous catalogs (for the PCCS only 1.5 surveys were analyzed). It also includes the latest calibration and beam information, and the authors have improved some of the algorithms used to measure the photometry of the sources.

This table contains the PCCS Public Release 2 table of sources detected at 70 GHz. Where the HEASARC parameter names differ from those used in the original table, the original names are listed parenthetically in upper case at the end of the parameter description.


PCCS100GHZ Catalog

Planck was a European Space Agency (ESA) mission, with significant contributions from the National Aeronautics and Space Agency (NASA). It was the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 12 August 2009. Planck then continuously measured the intensity of the sky over a range of frequencies from 30 to 857 GHz (wavelengths of 1 cm to 350 micron) with spatial resolutions ranging from about 33 to 5 arcminutes, respectively. The Low Frequency Instrument (LFI) on Planck provided temperature and polarization information using radiometers which operated between 30 and 70 GHz. The High Frequency Instrument (HFI) used pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353 GHz but did not measure polarization information in the two upper HFI bands at 545 and 857 GHz. The lowest Planck frequencies overlapped with WMAP, and the highest frequencies extended far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck provided an unprecedented window into dust emission at far-infrared and submillimeter wavelengths.

The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogs, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalog. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow the authors to increase the number of objects in the catalog, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).

The Low Frequency Instrument (LFI) Data Processing Center (DPC) produced the 30, 44, and 70 GHz maps after the completion of eight full surveys (spanning the period from 12 August 2009 to 3 August 2013). In addition, special LFI maps covering the period 1 April 2013 to 30 June 2013 were produced in order to compare the Planck flux-density scales with those of the Very Large Array and the Australia Telescope Compact Array, by performing simultaneous observations of a sample of sources over that period. The High Frequency Instrument (HFI) DPC produced the 100-, 143-, 217-, 353-, 545-, and 857-GHz maps after five full surveys (from 2009 August 12 to 2012 January 11).

As in the PCCS, the PCCS2 provides four different measures of the flux density for each source. They are determined by the source detection algorithm (DETFLUX), aperture photometry (APERFLUX), point spread function fitting (PSFFLUX), and Gaussian fitting (GAUFLUX). Only the first is obtained from the filtered maps; the other measures are estimated from the full-sky maps at the positions of the sources. The source detection algorithm photometry, the aperture photometry, and the point spread function (PSF) fitting use the Planck band-average effective beams, calculated with FEBeCoP (Fast Effective Beam Convolution in Pixel space). Note that only the PSF fitting algorithm takes into account the variation of the PSF with position on the sky. The PCCS2 has been produced from the Planck full-mission maps (eight sky surveys in the LFI and five sky surveys in the HFI), and therefore supersedes the previous catalogs (for the PCCS only 1.5 surveys were analyzed). It also includes the latest calibration and beam information, and the authors have improved some of the algorithms used to measure the photometry of the sources.

This table contains the PCCS2 subsample of the PCCS Public Release 2 table of sources detected at 100 GHz. One of the primary differences of this release of the PCCS from previous releases is the division of the six highest frequency catalogs into two subcatalogs, the PCCS2 and the PCCS2E. This division separates sources for which the reliability (the fraction of sources above a given S/N which are real) can be quantified (PCCS2) from those of unknown reliability (PCCS2E). This separation is primarily based on the Galactic coordinates of the source, as described in Section 2.3 of the reference paper. The PCCS2E subcatalog for this frequency is not included in this HEASARC table but is available at the CDS as the file http://cdsarc.u-strasbg.fr/ftp/cats/J/A+A/594/A26/pccs100e.dat.gz.

Where the HEASARC parameter names in this table differ from those used in the original table, the original names are listed parenthetically in upper case at the end of the parameter description.


PCCS143GHZ Catalog

Planck was a European Space Agency (ESA) mission, with significant contributions from the National Aeronautics and Space Agency (NASA). It was the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 12 August 2009. Planck then continuously measured the intensity of the sky over a range of frequencies from 30 to 857 GHz (wavelengths of 1 cm to 350 micron) with spatial resolutions ranging from about 33 to 5 arcminutes, respectively. The Low Frequency Instrument (LFI) on Planck provided temperature and polarization information using radiometers which operated between 30 and 70 GHz. The High Frequency Instrument (HFI) used pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353 GHz but did not measure polarization information in the two upper HFI bands at 545 and 857 GHz. The lowest Planck frequencies overlapped with WMAP, and the highest frequencies extended far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck provided an unprecedented window into dust emission at far-infrared and submillimeter wavelengths.

The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogs, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalog. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow the authors to increase the number of objects in the catalog, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).

The Low Frequency Instrument (LFI) Data Processing Center (DPC) produced the 30, 44, and 70 GHz maps after the completion of eight full surveys (spanning the period from 12 August 2009 to 3 August 2013). In addition, special LFI maps covering the period 1 April 2013 to 30 June 2013 were produced in order to compare the Planck flux-density scales with those of the Very Large Array and the Australia Telescope Compact Array, by performing simultaneous observations of a sample of sources over that period. The High Frequency Instrument (HFI) DPC produced the 100-, 143-, 217-, 353-, 545-, and 857-GHz maps after five full surveys (from 2009 August 12 to 2012 January 11).

As in the PCCS, the PCCS2 provides four different measures of the flux density for each source. They are determined by the source detection algorithm (DETFLUX), aperture photometry (APERFLUX), point spread function fitting (PSFFLUX), and Gaussian fitting (GAUFLUX). Only the first is obtained from the filtered maps; the other measures are estimated from the full-sky maps at the positions of the sources. The source detection algorithm photometry, the aperture photometry, and the point spread function (PSF) fitting use the Planck band-average effective beams, calculated with FEBeCoP (Fast Effective Beam Convolution in Pixel space). Note that only the PSF fitting algorithm takes into account the variation of the PSF with position on the sky. The PCCS2 has been produced from the Planck full-mission maps (eight sky surveys in the LFI and five sky surveys in the HFI), and therefore supersedes the previous catalogs (for the PCCS only 1.5 surveys were analyzed). It also includes the latest calibration and beam information, and the authors have improved some of the algorithms used to measure the photometry of the sources.

This table contains the PCCS2 subsample of the PCCS Public Release 2 table of sources detected at 143 GHz. One of the primary differences of this release of the PCCS from previous releases is the division of the six highest frequency catalogs into two subcatalogs, the PCCS2 and the PCCS2E. This division separates sources for which the reliability (the fraction of sources above a given S/N which are real) can be quantified (PCCS2) from those of unknown reliability (PCCS2E). This separation is primarily based on the Galactic coordinates of the source, as described in Section 2.3 of the reference paper. The PCCS2E subcatalog for this frequency is not included in this HEASARC table but is available at the CDS as the file http://cdsarc.u-strasbg.fr/ftp/cats/J/A+A/594/A26/pccs143e.dat.gz.

Where the HEASARC parameter names in this table differ from those used in the original table, the original names are listed parenthetically in upper case at the end of the parameter description.


PCCS217GHZ Catalog

Planck was a European Space Agency (ESA) mission, with significant contributions from the National Aeronautics and Space Agency (NASA). It was the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 12 August 2009. Planck then continuously measured the intensity of the sky over a range of frequencies from 30 to 857 GHz (wavelengths of 1 cm to 350 micron) with spatial resolutions ranging from about 33 to 5 arcminutes, respectively. The Low Frequency Instrument (LFI) on Planck provided temperature and polarization information using radiometers which operated between 30 and 70 GHz. The High Frequency Instrument (HFI) used pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353 GHz but did not measure polarization information in the two upper HFI bands at 545 and 857 GHz. The lowest Planck frequencies overlapped with WMAP, and the highest frequencies extended far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck provided an unprecedented window into dust emission at far-infrared and submillimeter wavelengths.

The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogs, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalog. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow the authors to increase the number of objects in the catalog, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).

The Low Frequency Instrument (LFI) Data Processing Center (DPC) produced the 30, 44, and 70 GHz maps after the completion of eight full surveys (spanning the period from 12 August 2009 to 3 August 2013). In addition, special LFI maps covering the period 1 April 2013 to 30 June 2013 were produced in order to compare the Planck flux-density scales with those of the Very Large Array and the Australia Telescope Compact Array, by performing simultaneous observations of a sample of sources over that period. The High Frequency Instrument (HFI) DPC produced the 100-, 143-, 217-, 353-, 545-, and 857-GHz maps after five full surveys (from 2009 August 12 to 2012 January 11).

As in the PCCS, the PCCS2 provides four different measures of the flux density for each source. They are determined by the source detection algorithm (DETFLUX), aperture photometry (APERFLUX), point spread function fitting (PSFFLUX), and Gaussian fitting (GAUFLUX). Only the first is obtained from the filtered maps; the other measures are estimated from the full-sky maps at the positions of the sources. The source detection algorithm photometry, the aperture photometry, and the point spread function (PSF) fitting use the Planck band-average effective beams, calculated with FEBeCoP (Fast Effective Beam Convolution in Pixel space). Note that only the PSF fitting algorithm takes into account the variation of the PSF with position on the sky. The PCCS2 has been produced from the Planck full-mission maps (eight sky surveys in the LFI and five sky surveys in the HFI), and therefore supersedes the previous catalogs (for the PCCS only 1.5 surveys were analyzed). It also includes the latest calibration and beam information, and the authors have improved some of the algorithms used to measure the photometry of the sources.

This table contains the PCCS2 subsample of the PCCS Public Release 2 table of sources detected at 217 GHz. One of the primary differences of this release of the PCCS from previous releases is the division of the six highest frequency catalogs into two subcatalogs, the PCCS2 and the PCCS2E. This division separates sources for which the reliability (the fraction of sources above a given S/N which are real) can be quantified (PCCS2) from those of unknown reliability (PCCS2E). This separation is primarily based on the Galactic coordinates of the source, as described in Section 2.3 of the reference paper. The PCCS2E subcatalog for this frequency is not included in this HEASARC table but is available at the CDS as the file http://cdsarc.u-strasbg.fr/ftp/cats/J/A+A/594/A26/pccs217e.dat.gz.

Where the HEASARC parameter names in this table differ from those used in the original table, the original names are listed parenthetically in upper case at the end of the parameter description.


PCCS353GHZ Catalog

Planck was a European Space Agency (ESA) mission, with significant contributions from the National Aeronautics and Space Agency (NASA). It was the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 12 August 2009. Planck then continuously measured the intensity of the sky over a range of frequencies from 30 to 857 GHz (wavelengths of 1 cm to 350 micron) with spatial resolutions ranging from about 33 to 5 arcminutes, respectively. The Low Frequency Instrument (LFI) on Planck provided temperature and polarization information using radiometers which operated between 30 and 70 GHz. The High Frequency Instrument (HFI) used pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353 GHz but did not measure polarization information in the two upper HFI bands at 545 and 857 GHz. The lowest Planck frequencies overlapped with WMAP, and the highest frequencies extended far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck provided an unprecedented window into dust emission at far-infrared and submillimeter wavelengths.

The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogs, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalog. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow the authors to increase the number of objects in the catalog, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).

The Low Frequency Instrument (LFI) Data Processing Center (DPC) produced the 30, 44, and 70 GHz maps after the completion of eight full surveys (spanning the period from 12 August 2009 to 3 August 2013). In addition, special LFI maps covering the period 1 April 2013 to 30 June 2013 were produced in order to compare the Planck flux-density scales with those of the Very Large Array and the Australia Telescope Compact Array, by performing simultaneous observations of a sample of sources over that period. The High Frequency Instrument (HFI) DPC produced the 100-, 143-, 217-, 353-, 545-, and 857-GHz maps after five full surveys (from 2009 August 12 to 2012 January 11).

As in the PCCS, the PCCS2 provides four different measures of the flux density for each source. They are determined by the source detection algorithm (DETFLUX), aperture photometry (APERFLUX), point spread function fitting (PSFFLUX), and Gaussian fitting (GAUFLUX). Only the first is obtained from the filtered maps; the other measures are estimated from the full-sky maps at the positions of the sources. The source detection algorithm photometry, the aperture photometry, and the point spread function (PSF) fitting use the Planck band-average effective beams, calculated with FEBeCoP (Fast Effective Beam Convolution in Pixel space). Note that only the PSF fitting algorithm takes into account the variation of the PSF with position on the sky. The PCCS2 has been produced from the Planck full-mission maps (eight sky surveys in the LFI and five sky surveys in the HFI), and therefore supersedes the previous catalogs (for the PCCS only 1.5 surveys were analyzed). It also includes the latest calibration and beam information, and the authors have improved some of the algorithms used to measure the photometry of the sources.

This table contains the PCCS2 subsample of the PCCS Public Release 2 table of sources detected at 353 GHz. One of the primary differences of this release of the PCCS from previous releases is the division of the six highest frequency catalogs into two subcatalogs, the PCCS2 and the PCCS2E. This division separates sources for which the reliability (the fraction of sources above a given S/N which are real) can be quantified (PCCS2) from those of unknown reliability (PCCS2E). This separation is primarily based on the Galactic coordinates of the source, as described in Section 2.3 of the reference paper. The PCCS2E subcatalog for this frequency is not included in this HEASARC table but is available at the CDS as the file http://cdsarc.u-strasbg.fr/ftp/cats/J/A+A/594/A26/pccs353e.dat.gz.

Where the HEASARC parameter names in this table differ from those used in the original table, the original names are listed parenthetically in upper case at the end of the parameter description.


PCCS545GHZ Catalog

Planck was a European Space Agency (ESA) mission, with significant contributions from the National Aeronautics and Space Agency (NASA). It was the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 12 August 2009. Planck then continuously measured the intensity of the sky over a range of frequencies from 30 to 857 GHz (wavelengths of 1 cm to 350 micron) with spatial resolutions ranging from about 33 to 5 arcminutes, respectively. The Low Frequency Instrument (LFI) on Planck provided temperature and polarization information using radiometers which operated between 30 and 70 GHz. The High Frequency Instrument (HFI) used pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353 GHz but did not measure polarization information in the two upper HFI bands at 545 and 857 GHz. The lowest Planck frequencies overlapped with WMAP, and the highest frequencies extended far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck provided an unprecedented window into dust emission at far-infrared and submillimeter wavelengths.

The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogs, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalog. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow the authors to increase the number of objects in the catalog, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).

The Low Frequency Instrument (LFI) Data Processing Center (DPC) produced the 30, 44, and 70 GHz maps after the completion of eight full surveys (spanning the period from 12 August 2009 to 3 August 2013). In addition, special LFI maps covering the period 1 April 2013 to 30 June 2013 were produced in order to compare the Planck flux-density scales with those of the Very Large Array and the Australia Telescope Compact Array, by performing simultaneous observations of a sample of sources over that period. The High Frequency Instrument (HFI) DPC produced the 100-, 143-, 217-, 353-, 545-, and 857-GHz maps after five full surveys (from 2009 August 12 to 2012 January 11).

As in the PCCS, the PCCS2 provides four different measures of the flux density for each source. They are determined by the source detection algorithm (DETFLUX), aperture photometry (APERFLUX), point spread function fitting (PSFFLUX), and Gaussian fitting (GAUFLUX). Only the first is obtained from the filtered maps; the other measures are estimated from the full-sky maps at the positions of the sources. The source detection algorithm photometry, the aperture photometry, and the point spread function (PSF) fitting use the Planck band-average effective beams, calculated with FEBeCoP (Fast Effective Beam Convolution in Pixel space). Note that only the PSF fitting algorithm takes into account the variation of the PSF with position on the sky. The PCCS2 has been produced from the Planck full-mission maps (eight sky surveys in the LFI and five sky surveys in the HFI), and therefore supersedes the previous catalogs (for the PCCS only 1.5 surveys were analyzed). It also includes the latest calibration and beam information, and the authors have improved some of the algorithms used to measure the photometry of the sources.

This table contains the PCCS Public Release 2 table of sources detected at 545 GHz. Where the HEASARC parameter names differ from those used in the original table, the original names are listed parenthetically in upper case at the end of the parameter description.


PCCS857GHZ Catalog

Planck was a European Space Agency (ESA) mission, with significant contributions from the National Aeronautics and Space Agency (NASA). It was the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 12 August 2009. Planck then continuously measured the intensity of the sky over a range of frequencies from 30 to 857 GHz (wavelengths of 1 cm to 350 micron) with spatial resolutions ranging from about 33 to 5 arcminutes, respectively. The Low Frequency Instrument (LFI) on Planck provided temperature and polarization information using radiometers which operated between 30 and 70 GHz. The High Frequency Instrument (HFI) used pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353 GHz but did not measure polarization information in the two upper HFI bands at 545 and 857 GHz. The lowest Planck frequencies overlapped with WMAP, and the highest frequencies extended far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck provided an unprecedented window into dust emission at far-infrared and submillimeter wavelengths.

The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogs, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalog. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow the authors to increase the number of objects in the catalog, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).

The Low Frequency Instrument (LFI) Data Processing Center (DPC) produced the 30, 44, and 70 GHz maps after the completion of eight full surveys (spanning the period from 12 August 2009 to 3 August 2013). In addition, special LFI maps covering the period 1 April 2013 to 30 June 2013 were produced in order to compare the Planck flux-density scales with those of the Very Large Array and the Australia Telescope Compact Array, by performing simultaneous observations of a sample of sources over that period. The High Frequency Instrument (HFI) DPC produced the 100-, 143-, 217-, 353-, 545-, and 857-GHz maps after five full surveys (from 2009 August 12 to 2012 January 11).

As in the PCCS, the PCCS2 provides four different measures of the flux density for each source. They are determined by the source detection algorithm (DETFLUX), aperture photometry (APERFLUX), point spread function fitting (PSFFLUX), and Gaussian fitting (GAUFLUX). Only the first is obtained from the filtered maps; the other measures are estimated from the full-sky maps at the positions of the sources. The source detection algorithm photometry, the aperture photometry, and the point spread function (PSF) fitting use the Planck band-average effective beams, calculated with FEBeCoP (Fast Effective Beam Convolution in Pixel space). Note that only the PSF fitting algorithm takes into account the variation of the PSF with position on the sky. The PCCS2 has been produced from the Planck full-mission maps (eight sky surveys in the LFI and five sky surveys in the HFI), and therefore supersedes the previous catalogs (for the PCCS only 1.5 surveys were analyzed). It also includes the latest calibration and beam information, and the authors have improved some of the algorithms used to measure the photometry of the sources.

This table contains the PCCS2 subsample of the PCCS Public Release 2 table of sources detected at 857 GHz. One of the primary differences of this release of the PCCS from previous releases is the division of the six highest frequency catalogs into two subcatalogs, the PCCS2 and the PCCS2E. This division separates sources for which the reliability (the fraction of sources above a given S/N which are real) can be quantified (PCCS2) from those of unknown reliability (PCCS2E). This separation is primarily based on the Galactic coordinates of the source, as described in Section 2.3 of the reference paper. The PCCS2E subcatalog for this frequency is not included in this HEASARC table but is available at the CDS as the file http://cdsarc.u-strasbg.fr/ftp/cats/J/A+A/594/A26/pccs857e.dat.gz.

Where the HEASARC parameter names in this table differ from those used in the original table, the original names are listed parenthetically in upper case at the end of the parameter description.


PLANCKESZC Catalog

Planck is a European Space Agency (ESA) mission, with significant contributions from the U.S. National Aeronautics and Space Agency (NASA). It is the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 13 August 2009. Since then, Planck has been continuously measuring the intensity of the sky over a range of frequencies from 30 to 857 GHz (wavelengths of 1 cm to 350 microns) with spatial resolutions ranging from about 33' to 5' respectively. The Low Frequency Instrument (LFI) on Planck provides temperature and polarization information using radiometers which operate between 30 and 70 GHz. The High Frequency Instrument (HFI) uses pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353 GHz but does not measure polarization information in the two upper HFI bands at 545 and 857 GHz. The lowest frequencies overlap with WMAP, and the highest frequencies extend far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck is providing an unprecedented window into dust emission at far-infrared and submillimeter wavelengths.

The Planck Early Release Compact Source Catalogue (ERCSC) is a list of all high reliability sources, both Galactic and extragalactic, derived from the first sky coverage. The data that went into this early release comprise all observations undertaken between 13 August 2009 and 6 June 2010, corresponding to Planck operational days 91-389. Since the Planck scan strategy results in the entire sky being observed every 6 months, the data considered in this release correspond to more than the first sky coverage. The source lists have reliability goals of >90% across the entire sky and >95% at high Galactic latitude. The goals on photometric accuracy are 30% while the positional accuracy goal translates to a positional root mean square (RMS) uncertainty that is less than 1/5 of the beam full width at half maximum (FWHM).

Detailed explanations about the mission and the catalogs included here can be found in the "Explanatory supplement" (file ftp://cdsarc.u-strasbg.fr/pub/cats/VIII/88/ercsc4_3.pdf ). Skymaps of the sources can be found in the ftp://cdsarc.u-strasbg.fr/pub/cats/VIII/88/skymaps/ subdirectory; postage stamps of the sources in the ECC (Early Cold Cores) catalog and in the different filters are located in the ftp://cdsarc.u-strasbg.fr/pub/cats/VIII/88/stamps/ subdirectory.

This present table is the Planck Early Sunyaev-Zel'dovich (ESZ) cluster sample, a list of SZ cluster candidates which are detected by their multi-frequency signature through the Planck bands. The thermal SZ effect is the result of CMB photons inverse Compton scattering off energetic electrons in the hot intra-cluster medium. The net result is a distortion in the shape of the CMB spectrum which results in a deficit of flux density below ~220 GHz and an increment in flux density at higher frequencies. By utilizing a matched multi-frequency filter (MMF), the spectral signature of this distortion can be detected and measured in the Planck all-sky maps, which enables cluster candidates to be detected. The ESZ sample generated as part of the Planck early data release is the result of a blind multi-frequency search in the all-sky maps, i.e., no prior positional information on clusters detected in any existing catalogs was fed as input to the detection algorithm. In practice, the ESZ sample is produced using one of the four MMF algorithms available within the Planck Collaboration (hereafter MMF3; see Melin et al. 2010, A&A, submitted for details of the comparison of the cluster extraction algorithms). MMF3 is an all-sky extension of the algorithm described in Melin et al. (2006, A&A, 459, 341) and is run blindly over the six HFI frequency maps. The technique first divides the all-sky maps into a set of overlapping square patches. The matched multi-frequency filter then combines optimally the six frequencies of each patch assuming the SZ frequency spectrum and using the Arnaud et al. (2010, A&A, 517, A92) pressure profile as the cluster profile. Auto- and cross- power spectra used by the MMF are directly estimated from the data. They are thus adapted to the local instrumental noise and astrophysical contamination. For each patch, the scale radius of the cluster profile is varied to maximize the signal-to-noise ratio of each detection. The algorithm thus assigns to each detected source an estimated size and an integrated flux. The detected sources extracted from individual patches are finally merged into an all-sky cluster list. Non-SZ sources captured by the MMF algorithm can contaminate the list and an additional step of validation of the detection is needed (see Section 12 of the "Explanatory supplement", available at ftp://cdsarc.u-strasbg.fr/pub/cats/VIII/88/ercsc4_3.pdf for more details).


PLANCKGCC Catalog

The authors present the Planck Catalog of Galactic Cold Clumps (PGCC), an all-sky catalog of Galactic cold clump candidates detected by Planck. This catalog is the full version of the Early Cold Core (ECC) catalog, which was made available in 2011 with the Early Release Compact Source Catalog (ERCSC) and which contained 915 high signal-to-noise sources. It is based on the Planck 48-month mission data that are currently being released to the astronomical community. The PGCC catalog is an observational catalog consisting exclusively of Galactic cold sources. The three highest Planck bands (857, 454, and 353GHz) have been combined with IRAS data at 3THz to perform a multi-frequency detection of sources colder than their local environment. After rejection of possible extragalactic contaminants, the PGCC catalog contains 13188 Galactic sources spread across the whole sky, i.e., from the Galactic plane to high latitudes, following the spatial distribution of the main molecular cloud complexes. The median temperature of PGCC sources lies between 13 and 14.5K, depending on the quality of the flux density measurements, with a temperature ranging from 5.8 to 20K after removing the sources with the top 1% highest temperature estimates. Using seven independent methods, reliable distance estimates have been obtained for 5574 sources, which allows the authors to derive their physical properties such as their mass, physical size, mean density, and luminosity. The PGCC sources are located mainly in the solar neighborhood, but also up to a distance of 10.5kpc in the direction of the Galactic center, and range from low-mass cores to large molecular clouds. Because of this diversity and because the PGCC catalog contains sources in very different environments, the catalog is useful for investigating the evolution from molecular clouds to cores. Finally, it also includes 54 additional sources located in the Small and Large Magellanic Clouds.

This catalog is based on three highest Planck frequency channels (i.e., 857, 545, 353 GHz), which are designed to cover the Galactic cold dust emission peak. The 217 GHz band is not included for two reasons: first, the band is contaminated by the CO J=2->1 emission line, which is expected to be significant towards dense regions; second, the contamination by the cosmic microwave background may become problematic at high latitude.

The Planck data are combined with the IRIS all-sky data (Miville-Deschenes & Lagache 2005). The IRIS 3THz (100{mu}m) data were chosen to complement the Planck data because it is a good tracer of Galactic warm (~20 K) dust, among other reasons provided in the paper.


PLANCKHZSC Catalog

The Planck mission, thanks to its large frequency range and all-sky coverage, has a unique potential for systematically detecting the brightest, and rarest, sub-millimeter sources on the sky, including distant objects in the high-redshift Universe traced by their dust emission. A novel method, based on a component-separation procedure using a combination of Planck and IRAS data, has been validated and characterized on numerous simulations, and applied to select the most luminous cold sub-millimeter sources with spectral energy distributions peaking between 353 and 857GHz at 5-arcminute resolution. A total of 2,151 Planck high-z source candidates (the PHZ list) have been detected in the cleanest 26% of the sky, with flux density at 545 GHz above 500 mJy. Embedded in the cosmic infrared background close to the confusion limit, these high-z candidates exhibit colder colors than their surroundings, consistent with redshifts z greater than 2, assuming a dust temperature of Txgal = 35 K and a spectral index of betaxgal = 1.5. Exhibiting extremely high luminosities, larger than 1014 Lsun, the PHZ objects may be made of multiple galaxies or clumps at high redshift, as suggested by a first statistical analysis based on a comparison with number count models. Furthermore, first follow-up observations obtained from optical to sub-millimeter wavelengths, which can be found in companion papers, have confirmed that this list consists of two distinct populations. A small fraction (around 3%) of the sources have been identified as strongly gravitationally lensed star-forming galaxies at redshift 2 to 4, while the vast majority of the PHZ sources appear as overdensities of dusty star-forming galaxies, having colors consistent with being at z > 2, and may be considered as proto-cluster candidates. The PHZ provides an original sample, which is complementary to the Planck Sunyaev-Zeldovich Catalog (PSZ2); by extending the population of virialized massive galaxy clusters detected below z < 1.5 through their SZ signal to a population of sources at z > 1.5, the PHZ may contain the progenitors of today's clusters. Hence the Planck list of high-redshift source candidates opens a new window on the study of the early stages of structure formation, particularly understanding the intensively star-forming phase at high-z.

The compact source detection algorithm used herein requires positive detections simultaneously within a 5-arcminute radius in the 545-GHz excess map, and the 857-, 545-, and 353-GHz cleaned maps. It also requires a non-detection in the 100-GHz cleaned maps, which traces emission from synchrotron sources. A detection is then defined as a local maximum of the signal-to-noise ratio (S/N) above a given threshold in each map, with a spatial separation of at least 5 arcminutes being required between two local maxima. A threshold of S/N > 5 is adopted for detections in the 545-GHz excess map, while this is slightly relaxed to S/N > 3 for detections in the cleaned maps because the constraint imposed by the spatial consistency between detections in all three bands is expected to reinforce the robustness of a simultaneous detection. Concerning the 100-GHz band, the authors adopt a similar threshold by requiring the absence of any local maximum with S/N > 3 within a radius of 5 arcminutes.

The HEASARC has changed the names of many of the parameters from those given in the original table. In such cases we have listed the original names in parentheses at the end of the parameter descriptions given below.


PLANCKSZ Catalog

The all-sky Planck catalog of 1,227 clusters and cluster candidates (PSZ1) derived from Sunyaev-Zeldovich (SZ) effect detections using the first 15.5 months of Planck satellite observations included 683 so-called previously known clusters. PSZ1 was first published in March 2013 (Planck Collaboration 2013 (2013yCat.8091....0P, and 2014A&A...571A..29P). This HEASARC table contains an updated version of the PSZ1 catalog, version 2.1 (10-02-2015) according to the CDS documentation, reporting the further confirmation of 86 Planck-discovered clusters. In total, the PSZ1 now contains 947 confirmed clusters, of which 214 were confirmed as newly discovered clusters through follow-up observations undertaken by the Planck Collaboration. The updated PSZ1 contains redshifts for 913 systems, of which 736 (~80.6%) are spectroscopic, and associated mass estimates derived from the Yz mass proxy. A new SZ quality flag is also provided for the remaining 280 candidates. This flag was derived from a novel artificial neural-network classification of the SZ signal. Based on this assessment, the purity of the updated PSZ1 catalogue is estimated to be 94%.

PLANCKSZ2 Catalog

This table contains the all-sky Planck catalog of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full Planck mission data. The catalog (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest systematic all-sky survey of galaxy clusters. It contains 1,653 detections, of which 1,203 are confirmed clusters with identified counterparts in external data sets, and is the first SZ-selected cluster survey containing more than 103 confirmed clusters. In the reference paper, the authors present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, they find that the estimates of the SZ strength parameter Y5R500 are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires the use of prior information on the cluster extent. The authors also describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infrared, optical, and X-ray data sets, and which places emphasis on the robustness of the counterpart match. They discuss the physical properties of the new sample and identify a population of low-redshift X-ray under-luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but they are almost absent from ROSAT X-ray selected samples.

Three pipelines were used to detect SZ clusters: two independent implementations of the Matched Multi-Filter (MMF1 and MMF3) and PowellSnakes (PwS). The main catalog contained in this HEASARC table is constructed as the union of the catalogs from the three detection methods. The completeness and reliability of the catalogs have been assessed through internal and external validation as described in section 4 of the reference paper.

The HEASARC has changed the names of many of the parameters from those given in the original table. In such cases we have listed the original names in parentheses at the end of the parameter descriptions given below.


Browse Feedback